lnec

SENECA: Building a fully digital neuromorphic processor, design trade-offs and challenges

Guangzhi Tang

guangzhi.tang@imec.nl

Hardware Efficient AI, imec the Netherlands

Neuromorphic Computing in the Netherlands Workshop (NCN2023) – October 2nd, 2023 – Groningen

Neuromorphic and Hardware Efficient AI Research

@ imec the Netherlands

public

Neuromorphic and Hardware Efficient AI Research

@ imec the Netherlands

3

[4] Tang, et al., ISCAS, 2023. [5] Shidqi, et al., under review.

umec

[6] Muller, et al., RadarConf, 2023.[7] Patiño-Saucedo, et al., ISCAS 2023.

[8] Yousefzadeh, et al., IJCNN, 2022.[9] Wang, et al., in submission.

[10] Nembhani, et al., under review.

Neuromorphic and Hardware Efficient Al Research @ imec the Netherlands

4

unec

[6] Muller, et al., RadarConf, 2023.[7] Patiño-Saucedo, et al., ISCAS 2023.

[8] Yousefzadeh, et al., IJCNN, 2022. [9] Wang, et al., in submission.

[10] Nembhani, et al., under review.

Trade-offs in Digital Neuromorphic Architecture Design

SENECA

Scalable Energy efficient NEuromorphic Computer Architecture

- **Memory** Unified, 3-level hierarchy with register, SRAM, shared memory
- **Multiplexing** Axon and neuron
- **Programmability** Fully programable for synapse, neuron, architecture, learning
- Asynchronous Core-to-core asynchrony
- Interconnectivity Multicasting NoC, software compression

Event-driven neural network processing

Event-driven Network (Input event integrate to all post-synaptic states)

Event-driven neural network processing

Event-driven neural network processing

Event-driven Network (Input event integrate to all post-synaptic states)

Event-driven neural network processing

Event-driven Network (Input event integrate to all post-synaptic states)

Optimizing event-driven processing on SENECA Design space exploration

Event-driven Network (Input event integrate to all post-synaptic states)

>**I5x** HW Improvement

ເງຍອ

Shidqi, et al., under review. public

Optimizing event-driven processing on SENECA Design space exploration

Event-driven Network (Input event integrate to all post-synaptic states)

Spike Grouping Reduce data movements

300x vs Loihi**6x** vs SpiNNaker2

່ເກາຍດ

* Results generated by Cadence Xcelium and JOULES ** KWS Network: 390-256-256-29

Shidqi, et al., under review. public

Event-driven Convolutional Neural Network

Existing problems of convolutional neural network on large-scale digital neuromorphic HW

ເກາຍc

13

Event-driven Convolutional Neural Network Event-driven Depth-first Convolution on SENECA

Single SENECA core processing 3x3 Convolution + 2x2 Max-Pooling

ເກາຍດ

Shidqi, et al., under review. public

Event-driven Convolutional Neural Network Event-driven Depth-first Convolution on SENECA

Single SENECA core processing 3x3 Convolution + 2x2 Max-Pooling

ເກາຍc

Shidqi, et al., under review. public

Event-driven Convolutional Neural Network Event-driven Depth-first Convolution on SENECA

Single SENECA core processing 3x3 Convolution + 2x2 Max-Pooling

Limitations:

- I. Overheads on buffering and sorting input events.
- 2. Difficulties for synchronizing a multi-core single-layer mapping in asynchronous system.
- 3. Only non-stateful convolutional layer can benefit on state memory reduction.

Hardware Efficient Al Team @ imec the Netherlands

ORIGINAL RESEARCH article

Front. Neurosci., 23 June 2023 Sec. Neuromorphic Engineering Volume 17 - 2023 | https://doi.org/10.3389/fnins.2023.1187252 This article is part of the Research Topic Spike-based learning application for neuromorphic engineering View all 16 Articles >

SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges

Guangzhi Tang ¹	Kanishkan Vadivel ¹	Yingfu Xu ¹	Refik Bilgic ²	Kevin Shidqi ¹
Paul Detterer ¹	Stefano Traferro ¹	Mario Konijnenburg	1 🕘 Manolis Si	falakis ¹
Gert-Jan van Schaik ¹	Amirreza Yousefzadeł	1*		
¹ Imec, Eindhoven, Netherland	ls			

This technology is partially funded and initiated by the Netherlands and European Union's Horizon 2020 research and innovation projects **TEMPO** (ECSEL Joint Undertaking under grant agreement No 826655), **ANDANTE** (ECSEL Joint Undertaking under grant agreement No 876925), **DAIS** (Key Digital Technologies Joint Undertaking under grant agreement No 101007273) and **REBECCA** (Key Digital Technologies Joint Undertaking under grant agreement No 101097224).

Amirreza

Guangzhi

Manolis

Yingfu

Kanishkan

Team Members

Kevin

Alexandra

Students

Refik

Prithvish

Shengi

Roy

0

...

Gert-Jan

embracing a better life